188 research outputs found

    Size selection of fish in the trap fisheries of the Baltic and Bothnian Seas

    Get PDF
    A sustainable fishery in the Baltic Sea requires fishing gear that fishes selectively and at the same time excludes raiding seals. A successful type of trap recently developed in response to the seal problem is the pontoon fish chamber, which significantly decreases damage to gear and catch losses caused by grey seals. However, a common problem with traps is the bycatch of juvenile and non-marketable fish which constitutes a threat to the sustainability of the fishery and a time-consuming problem for the fishers. This thesis deal with bycatch reduction of young herring, whitefish and perch in pontoon traps. Rigid grids and square mesh panels were installed in traps during commercial fishing operations and continuously monitored with underwater cameras. The selection efficiencies were calculated for different species and selection panel designs. The importance of abiotic and biotic factors for the selection efficiency, the diurnal activity levels of species, and the positions of escape through a selection panel were analysed. This thesis also addresses the survival changes of herring after being released from a trap and the potential size-structuring effects on the herring stock after a size-selective fishery. The results showed that several tonnes of young fish were able to escape through selection panels from the traps during a season. 70-80% of young herring and whitefish escaped through an encircling selection panel while 90-100% of young perch and roach escaped through a rigid grid. Both biotic and abiotic factors were influencing the selection efficiency of herring. The factors which had most effect were the quantity of fish in the trap, the season of the year, the time of day, and the presence of seals. The diurnal activities were significantly different between species. Herring and roach preferred to escape during night while perch escaped mostly during dusk and dawn. The passing through a rigid grid did not affect the short term mortality of young herring and the risk that extensive use of traps will induce selection for phenotypic changes in mature herring, leading to an evolutionary change on the Bothnian Sea herring population is low. The overall conclusion of this thesis is that bycatch can be reduced by equipping traps with selection panels. The appropriate design of the selection panel depends mainly on the behaviour and physiology of the fish. The survival changes of released fish seem high and the risk that extensive use of size-selective traps will induce evolutionary changes on the herring stock is low

    A deep learning–based algorithm for tall cell detection in papillary thyroid carcinoma

    Get PDF
    Introduction According to the World Health Organization, the tall cell variant (TCV) is an aggressive subtype of papillary thyroid carcinoma (PTC) comprising at least 30% epithelial cells two to three times as tall as they are wide. In practice, applying this definition is difficult causing substantial interobserver variability. We aimed to train a deep learning algorithm to detect and quantify the proportion of tall cells (TCs) in PTC. Methods We trained the deep learning algorithm using supervised learning, testing it on an independent dataset, and further validating it on an independent set of 90 PTC samples from patients treated at the Hospital District of Helsinki and Uusimaa between 2003 and 2013. We compared the algorithm-based TC percentage to the independent scoring by a human investigator and how those scorings associated with disease outcomes. Additionally, we assessed the TC score in 71 local and distant tumor relapse samples from patients with aggressive disease. Results In the test set, the deep learning algorithm detected TCs with a sensitivity of 93.7% and a specificity of 94.5%, whereas the sensitivity fell to 90.9% and specificity to 94.1% for non-TC areas. In the validation set, the deep learning algorithm TC scores correlated with a diminished relapse-free survival using cutoff points of 10% (p = 0.044), 20% (p < 0.01), and 30% (p = 0.036). The visually assessed TC score did not statistically significantly predict survival at any of the analyzed cutoff points. We observed no statistically significant difference in the TC score between primary tumors and relapse tumors determined by the deep learning algorithm or visually. Conclusions We present a novel deep learning–based algorithm to detect tall cells, showing that a high deep learning–based TC score represents a statistically significant predictor of less favorable relapse-free survival in PTC.Peer reviewe

    Detection of breast cancer lymph node metastases in frozen sections with a point-of care low-cost microscope scanner

    Get PDF
    Background Detection of lymph node metastases is essential in breast cancer diagnostics and staging, affecting treatment and prognosis. lntraoperative microscopy analysis of sentinel lymph node frozen sections is standard for detection of axillary metastases but requires access to a pathologist for sample analysis. Remote analysis of digitized samples is an alternative solution but is limited by the requirement for high-end slide scanning equipment. Objective To determine whether the image quality achievable with a low-cost, miniature digital microscope scanner is sufficient for detection of metastases in breast cancer lymph node frozen sections. Methods Lymph node frozen sections from 79 breast cancer patients were digitized using a prototype miniature microscope scanner and a high-end slide scanner. Images were independently reviewed by two pathologists and results compared between devices with conventional light microscopy analysis as ground truth. Results Detection of metastases in the images acquired with the miniature scanner yielded an overall sensitivity of 91% and specificity of 99% and showed strong agreement when compared to light microscopy (k = 0.91). Strong agreement was also observed when results were compared to results from the high-end slide scanner (k = 0.94). A majority of discrepant cases were micrometastases and sections of which no anticytokeratin staining was available. Conclusion Accuracy of detection of metastatic cells in breast cancer sentinel lymph node frozen sections by visual analysis of samples digitized using low-cost, point-of-care microscopy is comparable to analysis of digital samples scanned using a high-end, whole slide scanner. This technique could potentially provide a workflow for digital diagnostics in resource-limited settings, facilitate sample analysis at the point-of-care and reduce the need for trained experts on-site during surgical procedures.Peer reviewe

    Point-of-care mobile digital microscopy and deep learning for the detection of soil-transmitted helminths and Schistosoma haematobium

    Get PDF
    Background: Microscopy remains the gold standard in the diagnosis of neglected tropical diseases. As resource limited, rural areas often lack laboratory equipment and trained personnel, new diagnostic techniques are needed. Low-cost, point-of-care imaging devices show potential in the diagnosis of these diseases. Novel, digital image analysis algorithms can be utilized to automate sample analysis. Objective: Evaluation of the imaging performance of a miniature digital microscopy scanner for the diagnosis of soil-transmitted helminths and Schistosoma haematobium, and training of a deep learning-based image analysis algorithm for automated detection of soil-transmitted helminths in the captured images. Methods: A total of 13 iodine-stained stool samples containing Ascaris lumbricoides, Trichuris trichiura and hookworm eggs and 4 urine samples containing Schistosoma haematobium were digitized using a reference whole slide-scanner and the mobile microscopy scanner. Parasites in the images were identified by visual examination and by analysis with a deep learning-based image analysis algorithm in the stool samples. Results were compared between the digital and visual analysis of the images showing helminth eggs. Results: Parasite identification by visual analysis of digital slides captured with the mobile microscope was feasible for all analyzed parasites. Although the spatial resolution of the reference slide-scanner is higher, the resolution of the mobile microscope is sufficient for reliable identification and classification of all parasites studied. Digital image analysis of stool sample images captured with the mobile microscope showed high sensitivity for detection of all helminths studied (range of sensitivity = 83.3-100%) in the test set (n = 217) of manually labeled helminth eggs. Conclusions: In this proof-of-concept study, the imaging performance of a mobile, digital microscope was sufficient for visual detection of soil-transmitted helminths and Schistosoma haematobium. Furthermore, we show that deep learning-based image analysis can be utilized for the automated detection and classification of helminths in the captured images.Peer reviewe

    Identification of tumor epithelium and stroma in tissue microarrays using texture analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of the study was to assess whether texture analysis is feasible for automated identification of epithelium and stroma in digitized tumor tissue microarrays (TMAs). Texture analysis based on local binary patterns (LBP) has previously been used successfully in applications such as face recognition and industrial machine vision. TMAs with tissue samples from 643 patients with colorectal cancer were digitized using a whole slide scanner and areas representing epithelium and stroma were annotated in the images. Well-defined images of epithelium (n = 41) and stroma (n = 39) were used for training a support vector machine (SVM) classifier with LBP texture features and a contrast measure C (LBP/C) as input. We optimized the classifier on a validation set (n = 576) and then assessed its performance on an independent test set of images (n = 720). Finally, the performance of the LBP/C classifier was evaluated against classifiers based on Haralick texture features and Gabor filtered images.</p> <p>Results</p> <p>The proposed approach using LPB/C texture features was able to correctly differentiate epithelium from stroma according to texture: the agreement between the classifier and the human observer was 97 per cent (kappa value = 0.934, <it>P </it>< 0.0001) and the accuracy (area under the ROC curve) of the LBP/C classifier was 0.995 (CI95% 0.991-0.998). The accuracy of the corresponding classifiers based on Haralick features and Gabor-filter images were 0.976 and 0.981 respectively.</p> <p>Conclusions</p> <p>The method illustrates the capability of automated segmentation of epithelial and stromal tissue in TMAs based on texture features and an SVM classifier. Applications include tissue specific assessment of gene and protein expression, as well as computerized analysis of the tumor microenvironment.</p> <p>Virtual slides</p> <p>The virtual slide(s) for this article can be found here: <url>http://www.diagnosticpathology.diagnomx.eu/vs/4123422336534537</url></p

    Deep learning based tissue analysis predicts outcome in colorectal cancer

    Get PDF
    Image-based machine learning and deep learning in particular has recently shown expert-level accuracy in medical image classification. In this study, we combine convolutional and recurrent architectures to train a deep network to predict colorectal cancer outcome based on images of tumour tissue samples. The novelty of our approach is that we directly predict patient outcome, without any intermediate tissue classification. We evaluate a set of digitized haematoxylin-eosin-stained tumour tissue microarray (TMA) samples from 420 colorectal cancer patients with clinicopathological and outcome data available. The results show that deep learning-based outcome prediction with only small tissue areas as input outperforms (hazard ratio 2.3; CI 95% 1.79-3.03; AUC 0.69) visual histological assessment performed by human experts on both TMA spot (HR 1.67; CI 95% 1.28-2.19; AUC 0.58) and whole-slide level (HR 1.65; CI 95% 1.30-2.15; AUC 0.57) in the stratification into low-and high-risk patients. Our results suggest that state-of-the-art deep learning techniques can extract more prognostic information from the tissue morphology of colorectal cancer than an experienced human observer.Peer reviewe
    • …
    corecore